Engineering Physics

Course Code	19BS1205	Year	I	Semester	II
Course Category	Basic Sciences	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Apply the fundamental laws of electricity and magnetism to currents and propagation					
	of EM waves.					
CO2	Identify the propagation of light and demonstrate the loss mechanisms in optical					
	fibers.					
CO3	Explain the principles of physics in dielectrics, magnetic materials and identify the					
	mechanisms of polarization for useful engineering applications.					
CO4	Classify solids and calculate carrier concentration and conductivity in					
	semiconductors.					
CO5	Demonstrate the functioning of solar cell, photodiode, and semiconductors devices					
	for engineering applications.					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н												
CO2	Н	Н												L
CO3	Н	Н												L
CO4	Н	Н												L
CO5	Н	Н												L

Syllabus						
Uni						
t		d CO				
No.						
I	Basics of Electromagnetics					
	Electrostatic field: Coulombs law and Gauss law, derivation of Coulombs					
	law from Gauss law, applications of Gauss law (line charge, thin sheet of					
	charge and solid charged sphere), Gauss law of electrostatics in dielectric					
	medium, divergence and curl of electric fields, electric potential, relation	CO1				
	between potential and force, Poisson's and Laplace equations.					
	Magneto static field: Biot-Savart law, divergence and curl of magnetic					
	fields, Faraday's and Ampere's laws in integral and differential form,					
	displacement current, continuity equation, Maxwell's equations					
II	Fiber Optics					
	Introduction, advantages of optical fibers, principle and structure,	CO2				
	acceptance angle, numerical aperture, modes of propagation, classification	nce angle, numerical aperture, modes of propagation, classification				
	of fibers, fiber optic communication, importance of V- number, fiber optic					

	sensors (Temperature, displacement and force), applications.	
III	Dielectric and Magnetic materials	
	Dielectric materials: Introduction, electric polarization, dielectric polarizability, susceptibility and dielectric constant, types of polarizations (qualitative treatment only), frequency dependence of polarization, Lorentz (internal) field (quantitative), Clausius-Mossotti equation. Magnetic materials: Introduction, magnetic dipole moment, magnetization, magnetic susceptibility, and permeability, origin of permeability and permeability.	CO3
	magnetic susceptibility and permeability, origin of permanent magnetic moment, classification of magnetic materials, Weiss theory of ferromagnetism (qualitative), domain theory, hysteresis, soft and hard magnetic materials.	
IV	Semiconductor physics	
	Introduction, origin of energy band, intrinsic and extrinsic semiconductors, mechanism of conduction in intrinsic semiconductors, generation and recombination, carrier concentration in intrinsic semiconductors, variation of intrinsic carrier concentration with temperature, n-type and p-type semiconductors, carrier concentration in n type and p type semiconductors.	CO4
V	Semiconductor devices	
	Drift and diffusion currents in semiconductors, Hall effect and its applications, magnetoresistance, p-n junction layer formation and V-I characteristics, direct and indirect band gap semiconductors, construction and working of photodiode, LED, solar cell	CO5

Learn	inσ	Reso	urces
Ltain	ше	17030	uiccs

Text Books

- 1. Engineering Physics, R.K.Gaur& S.L.Gupta, Dhanpatrai Publications.
- 2. Solid State Physics, S.O.Pillai, New Age International.

Reference Books

- 1. A Text Book Of Engineering Physics, M.N.Avadhanulu & P.G.Kshrisagar, S.Chand Publications
- 2. Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.
- 3. Applied Physics, P.K. Palanai Swamy, Scitech Publications.
- 4. Engineering Physics, Dr.M.Arumugam, Anuradha Publications.
- 5. Introduction To Electrodynamics, David.J.Griffths, Pearson Education.

e- Resources & other digital material

http://physicsforidiots.com/physics/electromagnetism/

https://www.arcelect.com/fibercable.htm

http://freevideolectures.com/Course/3048/Physics-of-Materials/36

https://www.iitk.ac.in/mse/electronic-materials-and-devices

https://link.springer.com/chapter/10.1007/978-3-319-48933-9_35